veel mensen hebben ons gevraagd om de verwarring rond de verschillende formules van gemiddelde snelheid op te ruimen. We beginnen met de bottom line – Er is één veelzijdige formule voor alle vragen over gemiddelde snelheid en dat is
gemiddelde snelheid = totale afstand/Totale tijd
Het maakt niet uit welke formule je kiest om te gebruiken, het komt altijd neer op deze. Laten we met dit in gedachten de verschillende formules bespreken die we tegenkomen:
1., Gemiddelde snelheid = (a + b)/2
van toepassing wanneer men gedurende de helft van de tijd met snelheid a en gedurende de andere helft van de tijd met snelheid b reist. In dit geval is de gemiddelde snelheid het rekenkundig gemiddelde van de twee snelheden.
2. Gemiddelde snelheid = 2ab/(a + b)
van toepassing wanneer men met snelheid a voor de helft van de afstand reist en snelheid b voor de andere helft van de afstand. In dit geval is de gemiddelde snelheid het harmonische gemiddelde van de twee snelheden. Op soortgelijke regels kunt u deze formule voor een derde afstand wijzigen.
3., Gemiddelde snelheid = 3abc/(ab + bc + ca)
van toepassing wanneer men een derde van de afstand bij snelheid a aflegt, een derde bij snelheid b en een derde bij de rest van de afstand bij snelheid c.
merk op dat de algemene formule voor harmonisch gemiddelde voor n-getallen
harmonisch gemiddelde = N/(1/a + 1/b + 1/c + …)
4 is. U kunt ook gewogen gemiddelden gebruiken. Merk op dat bij gemiddelde snelheid het gewicht altijd ‘tijd’is., Dus in het geval u de gemiddelde snelheid krijgt, kunt u de verhouding van de tijd vinden als
t1/t2 = (a – Avg)/(Avg – b)
zoals u al weet, is dit gewoon onze gewogen gemiddelde formule.
laten we nu eens kijken naar enkele eenvoudige vragen waar u deze formules kunt gebruiken.
Vraag 1: Myra reed met een gemiddelde snelheid van 30 mijl per uur gedurende T-uren en vervolgens met een gemiddelde snelheid van 60 mijl/uur gedurende de volgende T-uren. Als ze geen stop maakte tijdens de reis en haar bestemming bereikte in 2T uur, wat was haar gemiddelde snelheid in mijl per uur voor de hele reis?,
(A) 40
(B) 45
(C) 48
(D) 50
(E) 55
oplossing: hier is de tijd waarvoor Myra met de twee snelheden reisde gelijk.
gemiddelde snelheid = (a + b)/2 = (30 + 60)/2 = 45 mijlen per uur
antwoord (B)
vraag 2: Myra reed met een gemiddelde snelheid van 30 mijl per uur voor de eerste 30 mijl van een rit & vervolgens met een gemiddelde snelheid van 60 mijl/uur voor de resterende 30 mijl van de rit. Als ze tijdens de reis geen tussenstops maakte, wat was haar gemiddelde snelheid in MIJL/UUR voor de hele reis?,
(a) 35
(B) 40
(C) 45
(D) 50
(E) 55
oplossing: hier is de afstand waarvoor Myra met de twee snelheden wordt afgelegd, gelijk.
gemiddelde snelheid = 2ab/(a + b) = 2*30*60/(30 + 60) = 40 mph
antwoord (B)
vraag 3: Myra reed met een gemiddelde snelheid van 30 mijl per uur voor de eerste 30 mijl van een reis, met een gemiddelde snelheid van 60 mijl per uur voor de volgende 30 mijl en met een gemiddelde snelheid van 90 mijl/uur voor de resterende 30 mijl van de reis., Als zij tijdens de reis geen stop maakte, lag de gemiddelde snelheid van Myra in mijl/uur gedurende de gehele reis het dichtst bij
(a) 35
(B) 40
(C) 45
(D) 50
(E) 55
oplossing: hier reisde Myra met drie snelheden voor elk een derde afstand.
gemiddelde snelheid = 3abc/(ab + bc + ca) = 3*30*60*90/(30*60 + 60*90 + 30*90)
gemiddelde snelheid = 3*2*90/(2 + 6 + 3) = 540/11
Dit is iets minder dan 50 dus antwoord (D).
vraag 4: Myra Reed enige tijd met een gemiddelde snelheid van 30 mijl per uur en vervolgens met een gemiddelde snelheid van 60 mijl/uur voor de rest van de reis., Als ze geen haltes maakte tijdens de reis en haar gemiddelde snelheid voor de hele reis was 50 mijl per uur, voor welk deel van de totale tijd reed ze op 30 mijl/uur?
(a) 1/5
(B) 1/3
(C) 2/5
(D) 2/3
(E) 3/5
oplossing: we kennen de gemiddelde snelheid en moeten de fractie van de tijd bij een bepaalde snelheid vinden.
t1 / t2 =(A2-Aavg) / (Aavg – A1)
t1/t2 = (60 – 50)/(50 – 30) = 1/2
dus op een totaal van 3 delen van de reistijd reed ze op 30 km / u voor 1 deel en op 60 km / u voor 2 delen van de tijd., Fractie van de totale tijd waarvoor ze reed op 30 mph is 1/3.
antwoord (B)
hoop dat dit een deel van uw gemiddelde snelheid formule verwarring oplost.Karishma, een computeringenieur met een grote interesse in alternatieve wiskundige benaderingen, heeft studenten begeleid in de continenten Azië, Europa en Noord-Amerika. Ze doceert de GMAT voor Veritas Prep en neemt regelmatig deel aan contentontwikkelingsprojecten zoals deze blog!