desintegración Radiactivaeditar

ejemplo de una cadena de desintegración radiactiva de plomo-212 (212Pb) a plomo-208 (208pb) . Cada nucleido padre se descompone espontáneamente en un nucleido hijo (el producto de desintegración) a través de una desintegración α o una desintegración β. El producto de desintegración final, el plomo-208 (208pb), es estable y ya no puede sufrir desintegración radiactiva espontánea.

toda materia ordinaria se compone de combinaciones de elementos químicos, cada uno con su propio número atómico, indicando el número de protones en el núcleo atómico., Además, los elementos pueden existir en diferentes isótopos, con cada isótopo de un elemento que difieren en el número de neutrones en el núcleo. Un isótopo particular de un elemento particular se llama nucleido. Algunos nucleidos son inherentemente inestables. Es decir, en algún momento en el tiempo, un átomo de tal nucleido experimentará desintegración radiactiva y se transformará espontáneamente en un nucleido diferente. Esta transformación se puede lograr de varias maneras diferentes, incluyendo la desintegración alfa (emisión de partículas alfa) y la desintegración beta (emisión de electrones, emisión de positrones o captura de electrones)., Otra posibilidad es la fisión espontánea en dos o más nucleidos.

mientras que el momento en el que un núcleo particular decae es impredecible, una colección de átomos de un nucleido radiactivo decae exponencialmente a una velocidad descrita por un parámetro conocido como la vida media, generalmente dada en unidades de años cuando se discuten técnicas de datación. Después de que haya transcurrido una vida media, la mitad de los átomos del nucleido en cuestión se habrán descompuesto en un nucleido «hija» o producto de desintegración., En muchos casos, el nucleido hija en sí es radiactivo, lo que resulta en una cadena de desintegración, que finalmente termina con la formación de un nucleido hija estable (no radiactivo); cada paso en dicha cadena se caracteriza por una vida media distinta. En estos casos, generalmente la vida media de interés en la datación radiométrica es la más larga de la cadena, que es el factor limitante de la velocidad en la transformación final del nucleido radiactivo en su hija estable. Los sistemas isotópicos que han sido explotados para la datación radiométrica tienen vidas medias que van desde solo unos 10 años (e. g.,, tritio) a más de 100 mil millones de años (por ejemplo, samario-147).

para la mayoría de los nucleidos radiactivos, la vida media depende únicamente de las propiedades nucleares y es esencialmente constante. Esto se sabe porque las constantes de decaimiento medidas por diferentes técnicas dan valores consistentes dentro de los errores analíticos y las edades de los mismos materiales son consistentes de un método a otro. No se ve afectada por factores externos como la temperatura, la presión, el entorno químico o la presencia de un campo magnético o eléctrico., Las únicas excepciones son los nucleidos que decaen por el proceso de captura de electrones, como el berilio-7, el estroncio-85 y el circonio-89, cuya tasa de decaimiento puede verse afectada por la densidad electrónica local. Para todos los demás nucleidos, la proporción del nucleido original a sus productos de desintegración cambia de una manera predecible a medida que el nucleido original decae con el tiempo.

esta previsibilidad permite que las abundancias relativas de nucleidos relacionados se utilicen como un reloj para medir el tiempo desde la incorporación de los nucleidos originales en un material hasta el presente., La naturaleza nos ha proporcionado convenientemente nucleidos radiactivos que tienen vidas medias que van desde considerablemente más largas que la edad del universo, a menos de un zeptosegundo. Esto permite medir un rango muy amplio de edades. Los isótopos con semividas muy largas se llaman «isótopos estables», y los isótopos con semividas muy cortas se conocen como «isótopos extintos».,»

determinación de la constante de Decaereditar

Véase también: Ley de decaimiento radiactivo

la constante de decaimiento radiactivo, la probabilidad de que un átomo decaiga por año, es la base sólida de la medición común de la radiactividad. La exactitud y precisión de la determinación de una edad (y la vida media de un nucleido) depende de la exactitud y precisión de la medición constante de desintegración. El método de crecimiento es una forma de medir la constante de decaimiento de un sistema, que implica la acumulación de nucleidos hija., Desafortunadamente para los nucleidos con altas constantes de desintegración (que son útiles para datar muestras muy antiguas), se requieren largos períodos de tiempo (décadas) para acumular suficientes productos de desintegración en una sola muestra para medirlos con precisión. Un método más rápido implica el uso de contadores de partículas para determinar la actividad alfa, beta o gamma, y luego dividirlo por el número de nucleidos radiactivos. Sin embargo, es difícil y costoso determinar con precisión el número de nucleidos radiactivos. Alternativamente, las constantes de decaimiento se pueden determinar comparando los datos de isótopos para rocas de edad conocida., Este método requiere que al menos uno de los sistemas isotópicos esté calibrado con mucha precisión, como el sistema Pb-Pb.

Precisión de radiométrica datingEdit

espectrómetro de masas de ionización Térmica utilizada en la datación radiométrica.

la ecuación básica de datación radiométrica requiere que ni el nucleido padre ni el producto hijo puedan entrar o salir del material después de su formación., Deben considerarse los posibles efectos de confusión de la contaminación de los isótopos padre e hijo, al igual que los efectos de cualquier pérdida o ganancia de dichos isótopos desde que se creó la muestra. Por lo tanto, es esencial tener la mayor información posible sobre el material que está siendo fechado y verificar si hay posibles signos de alteración. La precisión aumenta si se toman mediciones en múltiples muestras de diferentes ubicaciones del cuerpo de roca., Alternativamente, si varios minerales diferentes pueden ser datados de la misma muestra y se supone que están formados por el mismo evento y estaban en equilibrio con el reservorio cuando se formaron, deberían formar un isócrono. Esto puede reducir el problema de la contaminación. En la datación de uranio–plomo, se utiliza el diagrama de concordia que también disminuye el problema de la pérdida de nucleidos. Finalmente, la correlación entre diferentes métodos de datación isotópica puede ser requerida para confirmar la edad de una muestra. Por ejemplo, se determinó que la edad de los amitsoq gneisses de Groenlandia occidental era de 3,60 ± 0.,05 Ga (hace mil millones de años) usando la datación de uranio–plomo y 3.56 ± 0.10 Ga (hace mil millones de años) usando la datación de plomo–plomo, resultados que son consistentes entre sí.,: 142-143

la datación radiométrica precisa generalmente requiere que el padre tenga una semivida lo suficientemente larga como para estar presente en cantidades significativas en el momento de la medición (excepto como se describe a continuación en «datación con radionucleidos extintos de corta vida»), la semivida del padre se conoce con precisión, y se produce suficiente producto hija para medirse con precisión y distinguirse de la cantidad inicial de la hija presente en el material. Los procedimientos utilizados para aislar y analizar los nucleidos padre e hijo deben ser precisos y precisos., Esto normalmente implica la espectrometría de masas de relación isotópica.

La precisión de un método de datación depende en parte de la vida media del isótopo radiactivo involucrados. Por ejemplo, el carbono-14 tiene un período de semidesintegración de 5.730 años. Después de que un organismo ha estado muerto durante 60,000 años, queda tan poco carbono-14 que no se puede establecer una datación precisa. Por otro lado, la concentración de carbono-14 disminuye tan abruptamente que la edad de los restos relativamente jóvenes se puede determinar con precisión en unas pocas décadas.,

temperatura de Cerramientoeditar

Artículo principal: Temperatura de cierre

La temperatura de cierre o temperatura de bloqueo representa la temperatura por debajo de la cual el mineral es un sistema cerrado para los isótopos estudiados. Si un material que rechaza selectivamente el nucleido hija se calienta por encima de esta temperatura, cualquier nucleido hija que se haya acumulado con el tiempo se perderá a través de la difusión, restableciendo el «reloj» isotópico a cero. A medida que el mineral se enfría, la estructura cristalina comienza a formarse y la difusión de isótopos es menos fácil., A cierta temperatura, la estructura cristalina se ha formado lo suficiente para evitar la difusión de isótopos. Por lo tanto, una roca ígnea o metamórfica, que se está enfriando lentamente, no comienza a exhibir una desintegración radiactiva medible hasta que se enfría por debajo de la temperatura de cierre. La edad que se puede calcular por datación radiométrica es, por lo tanto, el momento en que la roca o mineral se enfrió a la temperatura de cierre. Esta temperatura varía para cada sistema mineral e isotópico, por lo que un sistema puede cerrarse para un mineral pero abrirse para otro., La datación de diferentes minerales y/o sistemas isotópicos (con diferentes temperaturas de cierre) dentro de la misma roca puede, por lo tanto, permitir el seguimiento de la historia térmica de la roca en cuestión con el tiempo, y por lo tanto la historia de los eventos metamórficos puede conocerse en detalle. Estas temperaturas se determinan experimentalmente en el laboratorio restableciendo artificialmente los minerales de la muestra utilizando un horno de alta temperatura. Este campo se conoce como termocronología o termocronometría.,

La edad equationEdit

Lu-Hf isochrons trazados de meteorito muestras. La edad se calcula a partir de la pendiente del isócrono (línea) y la composición original a partir de la intersección del isócrono con el eje Y.,

la expresión matemática que relaciona la desintegración radiactiva con el tiempo geológico es

D* = D0 + N(t) (eλt − 1)

donde

t es la edad de la muestra, D* es el número de átomos del isótopo hija radiogénico en la muestra, D0 es el número de átomos del isótopo hija en la composición original o inicial, N(t) es el número de átomos del isótopo padre en la muestra en el tiempo t (el presente), dado por N(T) = noe-λt, y λ es la constante de desintegración del isótopo padre, igual a la inversa de la vida media radiactiva del isótopo Padre veces el logaritmo natural de 2.,

la ecuación se expresa más convenientemente en términos de la cantidad medida N (t) en lugar del valor inicial constante No.

para calcular la edad, se asume que el sistema está cerrado (no se han perdido isótopos padres ni hijos del sistema), D0 debe ser insignificante o puede estimarse con precisión, λ se conoce con una alta precisión, y uno tiene mediciones precisas y precisas de D* y N(t).

la ecuación anterior utiliza información sobre la composición de los isótopos padre e hijo en el momento en que el material que se está probando se enfría por debajo de su temperatura de cierre., Esto está bien establecido para la mayoría de los sistemas isotópicos. Sin embargo, la construcción de un isócrono no requiere información sobre las composiciones originales, utilizando simplemente las proporciones Actuales de los isótopos padre e hija a un isótopo estándar. Se utiliza una gráfica de isócrono para resolver gráficamente la ecuación de edad y calcular la edad de la muestra y la composición original.